World-Leading St Andrews Scholarship in Earth Sciences and Chemistry

  • Full tuition fee
  • University of St Andrews
  • PhD, Research
  • The Roles of Lipids in Coral Biomineralisation and the Effects of Future Climate Change
  • International Students
  • UK
  • 01/16/2020
Expired in

Scholarship Description:

World-Leading St Andrews Scholarship in Earth Sciences and Chemistry is open for International Students . The scholarship allows PhD, Research level programm(s) in the field of The Roles of Lipids in Coral Biomineralisation and the Effects of Future Climate Change taught at University of St Andrews . The deadline of the scholarship is expired at 16 Jan 2020.

The University of St Andrews is pleased to offer a full scholarship funded by St Leonard’s Postgraduate College, to support an exceptional student undertaking doctoral research in the following project:

The Roles of Lipids in Coral Biomineralisation and the Effects of Future Climate Change

Coral reefs are among the most biologically diverse ecosystems and are of substantial economic importance in terms of fisheries, tourism and coastal protection. Understanding the coral biomineralisation process is key to predicting the impacts of increasing seawater temperatures and pCO2 (e.g. ocean acidification) on future reef development. To date, most research in this field has explored how anthropogenic changes in seawater affect the precipitation of aragonite, the calcium carbonate mineral used to build the coral skeleton. However coral skeletons are composite materials composed of both aragonite and organic materials including proteins, sugars and lipids. Very little is known about the roles of biomolecules in the precipitation process or how these will be affected by climate change.

This doctoral project will identify the roles of lipids in coral biomineralisation and determine how these will be affected by future climate change. Skeletal lipids are dominated by sterols and phospholipids and the latter may bind Ca2+ and act as templates for CaCOdeposition. Lipids extracted from coral skeletons affect the crystal morphology and porosity of calcite (a second form of calcium carbonate) precipitated in vitro but the molecules responsible for this are unresolved.

Key study objectives are to:

  1. Investigate how skeletal lipids affect aragonite precipitation. The student will use apparatus in Dr Allison’s lab to precipitate aragonites in vitro under tightly controlled conditions. They will determine how different lipids affect the growth rate and crystal morphology of aragonite. The student will develop methods to deposit the lipids for study on the starting aragonite seed crystals and to ensure that they remain stable during the precipitation. Similar techniques have been developed in bone research but are yet to be applied in the broader biomineralisation field.
  2. Determine how skeletal lipids respond to future climate change. Our preliminary experiments indicate that the lipid composition of the coral tissues is affected by seawater pCO2. The student will determine quantitatively how the lipid compositions of coral skeletons are affected by both increasing seawater pCO2 and temperature using the coral samples cultured previously. Skeletal lipids will be extracted and the concentrations of specific lipid species determined by electrospray tandem mass spectrometry and gas chromatography mass spectrometry in Dr Smith’s lab.
  3. Predict how future climate change will affect the roles of lipids in biomineralisation. The student will precipitate aragonite in vitro under conditions inferred to occur at the coral calcification site in the present day and under future climate change. Both the pH and dissolved inorganic chemistry of the fluid at the coral calcification site decrease under future climate scenarios. These changes influence how other biomolecules, e.g. amino acids, affect aragonite precipitation. The student will alter the seawater chemistry and the concentrations and composition of lipids to reflect that observed in coral skeletons under future climate scenarios and will determine how these changes affect biomineralisation.

This project will determine how lipids influence aragonite precipitation and will identify how future climate change will affect the lipid role in tropical corals. The results of the study will have applications across a range of marine calcareous organisms.

The successful candidate will be supervised by Dr Nicola Allison and Professor Terry Smith and based in the School of Earth and Environmental Sciences and the School of Chemistry.

Degree Level:

World-Leading St Andrews Scholarship in Earth Sciences and Chemistry is available to undertake PhD, Research level programs at University of St Andrews.

Available Subjects:

Following subject are available to study under this scholarship program.

    Scholarship Benefits:

    • Duration of Award 

    Up to 3.5 years. The successful candidate will be expected to have completed the doctorate degree by the end of the award term. The award term excludes the continuation period and any extension periods. 

    • Value of award

    The award covers full tuition fees for the award term as well as an annual stipend payable at the standard UK Research council rate (the 2019-2020 annual rate is £15,009). 

    • Tuition or maintenance award

    Tuition and maintenance.

    Eligible Nationalities:

    student from all countries are eligible to apply for the scholarship.

    Eligibility Criteria:

    Applicants must not already (i) hold a doctoral degree; or (ii) be matriculated for a doctoral degree at the University of St Andrews or another institution.

    Application Procedure:

    1. Apply for admission as a doctoral student. Please see the advice on Research programmes.
    2. After submitting the research application form in step 1, you will receive an email with a direct link to the Scholarships and Funding catalogue, where you can apply for the World-Leading St Andrews Scholarship.
      • Enter the catalogue by following the link in the email and clicking View the scholarships and funding catalogue to apply.
      • Select 2020/1 as the Academic Year and click Refresh list.
      • Locate World-Leading St Andrews Doctoral Scholarships in the list of scholarships (using the filter box if necessary), click Apply and complete the application form.
      • You can also use the catalogue to search and apply for other scholarships for which you are eligible.

    As part of the scholarship application you will be required to upload a personal statement. This should serve as a cover letter for the research project application as a whole, and should include an outline of your suitability for the project and why the project interests you. Please include how you meet any specified project criteria, which can be found in the "Eligibility" and "Project Description" sections above.

    Please contact [email protected] with any enquiries about the scholarship application process.

    When do applications open?

    December 2019

    Scholarship application deadline

    16 January 2020

    View scholarship

    Achievement Scholarships for International Undergraduate Students: Engineering and Information Technology, University of Technology Sydney


    The Elizabeth Greenshields Foundation Grant for Artists (Canada)

    oppurtunities according to your interest